Suppose A is a closed, bounded subset of \mathbb{R}^n . Then $\exists M>0$ such that $A \subset \{(x_1, \dots x_n) \in \mathbb{R}^n : |x_j| \leq M, \forall j\} = B$. That A is compact will follow from combining two observations:

- i. a closed subset of a compact set is compact
- ii. the set B is compact

To prove (i) : Suppose $A_1 \subset A_2$ with A_2 compact and A_1 a closed subset of \mathbb{R}^n . If $\{U_{\lambda}\}, \lambda \in \Lambda$, is a covering of A_1 (i.e., $A_1 \subset \bigcup_{\lambda \in \Lambda} U_{\lambda}$) with the U_{λ} 's open, then $\{U_{\lambda}\}$ together with \mathbb{R}^n - A_1 is a covering of A_2 by open sets (since $\mathbb{R}^n - A$ is open). Since A_2 is compact, some finite set of these, say , $U_{\lambda 1}, \ldots U_{\lambda k}$ and (perhaps) \mathbb{R}^2 - A_1 cover A_2 . Then $U_{\lambda 1}, \ldots U_{\lambda k}$ must cover A_1 since $(\mathbb{R}^n$ - A_1) $\cap A_1 = \emptyset$ [\mathbb{R}^n - A_1 does not 'help' to cover A_1 !]. Hence every open cover of A_1 has a finite subcover and A_1 is compact. \Box

Point (ii), that B is compact, can be proved by noting that the subdivision proof that [0,1] is covering compact has an obvious generalization to B. One replaces the divisions of [0,1] into pairs of successively smaller intervals, each half the size of the previous interval, by subdivisions of B into smaller cubes. In these, each of the x_j 's is controlled to lie in a half sized interval. E.g., the first step of the argument is to observe if $\{U_{\lambda}\}$ is a cover of b with no finite subcover then \exists a cube with all sides of length $\frac{1}{2} \subset B$ which is not covered by finitely many U_{λ} . Namely, some cube of the form $\{(x_1,...,x_n) : \alpha_j/2 \leq x_j \leq (\alpha_j+1)/2\}$ where each α_j is either 0 or 1 has this property. The proof continues in a way entirely analogous to the [0,1] case.